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Automatic La41. Automatic Language Recognition Via Spectral
and Token Based Approaches
D. A. Reynolds, W. M. Campbell, W. Shen, E. Singer

Automatic language recognition from speech
consists of algorithms and techniques that
model and classify the language being spoken.
Current state-of-the-art language recogni-
tion systems fall into two broad categories:
spectral- and token-sequence-based approaches.
In this chapter, we describe algorithms for
extracting features and models representing
these types of language cues and systems
for making recognition decisions using one
or more of these language cues. A perfor-
mance assessment of these systems is also
provided, in terms of both accuracy and
computation considerations, using the Na-
tional Institute of Science and Technology
(NIST) language recognition evaluation bench-
marks.
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41.1 Automatic Language Recognition

Automatic language recognition from speech consists of
algorithms and techniques that model and classify the
language being spoken. The term recognition can refer
to either identification of the spoken language from a set
of languages known to the system, or detection of the
presence of a particular language out of a larger set of
languages unknown to the system. As with other infor-
mation conveyed by the speech signal, cues about the
language being spoken occur at several levels. At the
top level the words being spoken to communicate a co-
herent message are the basis of what defines a language.
However, relying on automatic extraction of the words
presupposes the availability of a reliable speech recog-
nizer in the languages of interest, which is often not the
case in many practical applications requiring language
recognition. Further, language recognition is often used
as a low computation pre-processor to determine which
higher computation speech recognizer should be run, if

any. Fortunately, cues about the language are also trans-
mitted at lower levels in the speech signal, such as in
the phoneme inventory and co-occurrences (phonotac-
tics), the rhythm and timing (prosodics) and the acoustic
sounds (spectral characteristics), that are more amenable
to automatic extraction and modeling.

Current state-of-the-art language recognition sys-
tems are based on processing these low-level cues and
fall into two broad categories: spectral based and token
sequence based. This chapter describes algorithms for
extracting features and models representing these types
of language cues and systems for making recognition
decisions using one or more of these language cues. Ad-
ditionally, a performance assessment of these systems
is provided, in terms of both accuracy and computation
considerations, using the National Institute of Science
and Technology (NIST) language recognition evaluation
benchmarks.
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812 Part G Language Recognition

41.2 Spectral Based Methods

Spectral-based methods for language recognition op-
erate by extracting measurements of the short-term
speech spectrum over fixed analysis frames and then
modeling characteristics of these measurements, or fea-
tures, for each language to be recognized. Classification
techniques that have proved successful for language
recognition are generative, via Gaussian mixture models
(GMMs), and discriminative, via support vector ma-
chines (SVMs). This section first describes the spectral
feature extraction process and then the GMM and SVM
classifiers used for recognition.

41.2.1 Shifted Delta Cepstral Features

The features used for language recognition systems are
based on the cepstral coefficients derived from a mel-
scale filterbank analysis typically used in other speech
processing tasks such as speech and speaker recognition.
A block diagram of the filterbank feature extraction sys-
tem is shown in Fig. 41.1. The feature extraction consists
of the following steps. Every 10 ms the speech signal
is multiplied by a Hamming window with a duration
of 20 ms to produce a short-time speech segment for
analysis. The discrete Fourier spectrum is obtained via
a fast Fourier transform (FFT) from which the mag-
nitude squared spectrum is computed. The magnitude
spectrum is multiplied by a pre-emphasis filter to em-
phasize the high-frequency portion of the spectrum and
the result is put through a bank of triangular filters. The
filterbank used is similar to that in [41.1] and simulates
critical band filtering with a set of triangular bandpass
filters that operate directly on the magnitude spectrum.
The critical band warping is done by approximating the
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Fig. 41.1 Mel-scale filterbank cepstral feature extraction

mel-frequency scale, which is linear up to 1000 Hz and
logarithmic above 1000 Hz. The center frequencies of
the triangular filters follow a uniform 100 Hz mel-scale
spacing, and the bandwidths are set so the lower and
upper passband frequencies of a filter lie on the center
frequencies of the adjacent filters, giving equal band-
widths on the mel-scale but increasing bandwidths on the
linear frequency scale. The number of filters is selected
to cover the signal bandwidth [0, fs/2] Hz, where fs is
the sampling frequency. For 8 kHz sampled telephone
speech, there are 24 filters.

The log energy output of each filter is then used as
an element of a filterbank feature vector and the short-
term mel-scale cepstral feature vector is obtained from
the inverse cosine transform of the filterbank vector. To
model short-term speech dynamics, the static cepstral
vector is augmented by difference (delta) and accel-
eration (delta–delta) cepstra computed across several
frames.

Since the speech used for training and testing lan-
guage recognition systems can come from a variety of
sources (involving different microphones and channels),
it is important to apply some form of channel com-
pensation to the features. Typical channel compensation
techniques include blind deconvolution via RASTA (rel-
ative spectral) filtering [41.2] and per-utterance feature
normalization to zero mean and unit variance. More-
sophisticated compensation techniques, such as feature
mapping [41.3], that explicitly model channel effects are
also successfully used.

One of the significant advances in performing lan-
guage recognition using GMMs was the discovery of
a better feature set for language recognition [41.4]. The
improved feature set, the shifted delta cepstral (SDC) co-
efficients, are an extension of delta-cepstral coefficients.

SDC coefficients are calculated as shown
in Fig. 41.2. SDC coefficients are specified by four
parameters, conventionally written as N-d-P-k. For
a frame of data at time t, a set of MFCCs are calculated,
i. e.,

c0(t), c1(t), . . . , cN−1(t) . (41.1)

Note that the coefficient c0(t) is used. The parameter
d determines the spread across which deltas are calcu-
lated, and the parameter P determines the gaps between
successive delta computations. For a given time t,

Δc(t, i) = c(t + iP +d)− c(t + iP −d) (41.2)

represents an intermediate calculation, where i =
0, 1, . . . , k. The SDC coefficients are then k stacked
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Fig. 41.2 Shifted delta cepstral coefficients

versions of (41.2),

SDC(t) =

⎛
⎜⎜⎜⎜⎝

Δc(t, 0)

Δc(t, 1)
...

Δc(t, k −1)

⎞
⎟⎟⎟⎟⎠

. (41.3)

Prior to the use of SDC coefficients, GMM-based
language recognition was less accurate than alternate
approaches [41.5]. SDC coefficients capture variation
over many frames of data; e.g., the systems described
in this chapter use 21 consecutive frames of cepstral
coefficients. This long-term analysis might explain the
effectiveness of the SDC features in capturing language-
specific information.

41.2.2 Classifiers

Current state-of-the-art language recognition systems
use either or both generative GMM-based classifiers and
discriminative SVM-based classifiers.

Gaussian Mixture Models
The approach for a GMM classifier is to model the dis-
tribution of cepstral features for each language to be
recognized. A language-specific GMM is given by

p(x|λ) =
M∑

i=1

πiNi (x) , (41.4)

where x is a D-dimensional feature vector, Ni (x) are the
component densities, and πi are the mixture weights.
Each component density is a D-variate Gaussian func-
tion of the form

Ni (x) = 1

(2π)D/2|Σ i |1/2

× exp

{
−1

2
(x−μi )

T Σ−1
i (x−μi )

}
,

(41.5)

with mean vector μi and covariance matrix Σ i . The
mixture weights satisfy the constraint

M∑
i=1

πi = 1 , (41.6)

which ensures that the mixture is a true probability den-
sity function. The complete language-specific Gaussian
mixture density is parameterized by the mean vec-
tors, covariance matrices, and mixture weights from
all component densities and is represented by the no-
tation

λ = {πi , μi , Σ i} i = 1, . . . , M . (41.7)

For language recognition using SDC features, di-
agonal covariances and a mixture order of M = 2048
are used. It was empirically determined [41.4] that
higher-order GMMs provided substantial performance
improvements when using SDC features.

The GMM parameters are estimated via the
expectation-maximization (EM) algorithm [41.6] or by
Bayesian adaptation from a universal background model
(UBM) [41.7], as is done in speaker recognition (see
Part F of this Handbook). Adapting from a background
model has computational advantages in that it speeds
up both model training and likelihood computations.
For language recognition, the UBM is typically con-
structed by training a GMM using an aggregation of
the training data from all available languages. Recently,
discriminative training of GMM parameters based on
maximum mutual information optimization has yielded
very promising results [41.8].

For a general language recognition task, a GMM,
λl , is trained for each of the desired languages,
l = 1, . . . , L , and the likelihood of a sequence of fea-
ture vectors, X = (x1, . . . , xT ), extracted from a test
utterance is computed as

p(X|λl) =
T∏

t=1

p(xt |λl) . (41.8)

The model likelihood is computed assuming indepen-
dence between the feature vectors which means the
temporal ordering of the feature vectors is unimportant.
However, the SDC feature vectors xt were themselves
extracted over a multiframe time span and thereby en-
code local temporal sequence information.

The likelihood scores from the set of language mod-
els are then used by the back-end fusion/decision system
to compute likelihood ratios or to fuse with other system
scores (Sect. 41.4).
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814 Part G Language Recognition

Support Vector Machines
Support vector machines (SVMs) are flexible classifiers
that have recently shown promise in language recogni-
tion. SVMs rely on separating data in high-dimensional
spaces using the maximum margin concept [41.9]. An
SVM, f (Z), is constructed from sums of a kernel func-
tion K (·, ·),

f (Z) =
∑

i

αi K (Z, Zi )+d , (41.9)

where Z is the input feature vector,
∑

i αi = 0, and
αi �= 0. The Zi are support vectors and are obtained
from the training set by an optimization process [41.10].
The ideal classifier values are either 1 or −1, depending
on whether the corresponding support vector is in class 0
or class 1. For classification, a class decision is based on
whether the value f (Z) is above or below a threshold.

SVM kernels provide a method for compar-
ing sequences of feature vectors (e.g., shifted delta
cepstral coefficients). Given sequences of feature
vectors from two utterances, X = (x1, · · · , xTx ) and
Y = (y1, · · · , yTy ), the kernel produces a comparison
that provides discrimination between the languages of
the utterances. If the utterances are from the same lan-
guage, a large positive value is desired; otherwise, the
kernel should produce a large negative value.

The general setup for training a language recognition
system using support vector machines is a one-versus-
all strategy as shown in Fig. 41.3. For the example of
English in the figure, class 1 contains only target (En-
glish) language data and class 0 contains all of the
nontarget (non-English) language data pooled together.
Training proceeds using a standard SVM training tool
with a sequence kernel module (e.g., [41.10]). The re-
sulting process produces a model for recognizing the
target language.
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Fig. 41.3 Training a support vector machine for language
recognition

A useful kernel for language recognition is the
generalized linear discriminant sequence (GLDS) ker-
nel [41.11]. The GLDS kernel is simply an inner product
between average high-dimension expansions of a set of
basis functions b j (·),

b(x) = (b1(x) · · · bK (x))T , (41.10)

where K is the number of basis functions. Typically,
monomials up to a given degree are used as basis
functions. An example basis is

b(x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1

x1

x2
...

xn

x2
1
...

xi1
1 xi2

2 . . . xin
n

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (41.11)

The formula for the kernel is

KGLDS(X, Y) = b̄T
x R̄−1b̄y . (41.12)

The mapping X → b̄x is defined as

X → 1

Tx

Tx∑
t=1

b(xt) . (41.13)

The vector b̄y is defined in an analogous manner to
(41.13). R̄ is a correlation matrix derived from a large
set of data from multiple languages and many speakers
and is usually diagonal.

In a general language recognition task, a set of SVM
language models { fl} are trained to represent the target
languages l = 1, · · · , L . The sequence of vectors X is
extracted from a test utterance, mapped to an average
expansion using (41.13), and converted to a set of scores
sl = fl(b̄x). The SVM scores sl are usually transformed
to s′

l using a likelihood-ratio-type calculation

s′
l = sl − log

⎛
⎝ 1

M −1

∑
j �=l

e−s j

⎞
⎠ . (41.14)

The transformation (41.14) assumes that SVM scores
behave like log-likelihood ratios (see [41.12, 13] for
related discussions).
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Automatic Language Recognition Via Spectral and Token Based Approaches 41.3 Token-Based Methods 815

Several computational simplifications are available
for implementing an SVM system for language recogni-
tion. For instance, language recognition scoring can be

reduced to a single inner product. Also, language model
training can be simplified to a linear kernel in Fig. 41.3.
The reader is referred to [41.13] for additional details.

41.3 Token-Based Methods

Unlike acoustic approaches in which fixed-duration win-
dows of the speech signal are used to extract features for
classification, token-based approaches segment the in-
put speech signal into logical units or tokens. These
units could be based on a phonetic segmentation (e.g.,
phones), or a data-driven segmentation (e.g., GMM
mixture component tokens [41.14]). Features are then
extracted from the token stream, and classification is per-
formed using a language model. Figure 41.4 illustrates
the process.

This basic architecture allows for a variety of token-
based approaches, but the phoneme recognition followed
by language modeling (PRLM) approach originally de-
scribed in [41.15, 16] has been shown to work well for
language recognition. The remainder of this section will
focus on PRLM and related techniques that model the
phonotactic properties (phone stream dependencies) of
languages. Other token-based techniques that should be
noted include the work of [41.14] in which abstract to-
kens were used in place of phonetic units to achieve near
state-of-the-art language recognition performance.

41.3.1 Tokens

In the PRLM framework, the tokenizer is a phone rec-
ognizer (PR) that converts an input speech signal into
a sequence of phonetic units (phones). Each phone and

�# �
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Fig. 41.6 HMM:
typical HMM
topology for
phonetic units

its surrounding contexts are then combined to form
phone n-grams, the features used for scoring. These fea-
tures are scored against n-gram language models that
correspond to specific target languages to make language
decisions. Intuitively, these features represent the phono-
tactic dependencies (the rules governing the distribution
of phonetic sounds within a language) between indi-
vidual phonetic units. In an early work [41.17], House
and Neuberg used transcribed data to demonstrate the
feasibility of exploiting phonotactics to perform auto-
matic language identification. Figure 41.5 illustrates the
process.

Phone Recognition
Phone recognition is typically accomplished using hid-
den Markov models (HMMs) to represent phone units.
Figure 41.6 shows a standard topology for different
phonetic units. During recognition, these models are
combined to allow any phone to transition to any other
phone with equal probability. This configuration is of-
ten referred to as an open phone loop or null grammar,
as shown in Fig. 41.7.

The phone decoding process is based on a sequence
of observations X = (x1, · · · , xT ), where T is the num-
ber of speech frames. The observation xt is a vector
of acoustic features, usually mel-frequency cepstrum
coefficients (MFCC) [41.1] or perceptual linear predic-
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Fig. 41.4 Token-based language recognition
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Fig. 41.5 PRLM: phone recognition followed by language modeling
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Fig. 41.7 Open phone loop (null grammar) with phone
HMMs

tion (PLP) coefficients [41.18]). These vectors may also
include dynamic features (i. e., first and second differ-
ences). Using standard assumptions (see Part E of this
Handbook), the probability of this sequence with respect
to the language model λ is

p(X|λ) =
∑
∀s

T∏
t=1

p(xt |st, λ) · P(st |st−1, λ) , (41.15)

where s = s1, · · · , st, · · · , sT is a hypothesized se-
quence of states at times t = 1, · · · , T . Each state st of
the model has an observation probability p(xt |st, λ) and
a series of transition probabilities between all states and
st . For simplicity, a bigram model P(st |st−1, λ) has been
selected for the state transition model. With a null gram-
mar, the probabilities P(st |st−1, λ) are uniform for fixed
st−1. Typically, the observation probability p(xt |st, λ)
is modeled as a mixture of Gaussians resulting in
a continuous-density HMM.

Given a sequence of observation vectors X, the
phone recognizer attempts to decode the maximum
likelihood sequence of HMM states corresponding to X:

argmax
s

P(s|X) . (41.16)

Applying Bayes’ rule and recognizing that the maxi-
mization is independent of p(X):

argmax
s

p(X|s)p(s)

p(X)
= argmax

s
p(X|s)P(s) . (41.17)

Equation (41.17) is the Viterbi approximation of (41.15);
the goal is to maximize the following probability

p(X|s, λ)P(s|λ) =
T∏

t=1

p(xt |st, λ) · P(st |st−1, λ)
(41.18)

by selection of the state sequence s.
The Viterbi algorithm is generally used to search

the space of possible state sequences and a variety of
pruning strategies can be applied to keep the search
problem tractable. For language recognition, context in-
dependent phonetic units are typically used for decoding
(see [41.19] as an exception). For a more-detailed de-
scription of HMM models of speech refer to Part E of
this Handbook.

Phone Recognizer Training
A vital consideration in the training of phone recognizers
is the availability of phonetically or orthographi-
cally labeled speech for multiple languages. These
phone transcripts can be obtained from manual la-
beling by a trained listener or automatic labeling
from a word transcript and pronunciation dictio-
nary. As discussed later, the languages of the
phone recognizers need not be those of the tar-
get languages. Phonetically transcribed corpora are
relatively uncommon, and for a number of years
were available only as part of the Oregon Gradu-
ate Institute multilanguage telephone speech (OGI-TS)
corpus [41.20], which contained phonetically hand-
labeled speech for six languages (English, German,
Hindi, Japanese, Mandarin, and Spanish) collected
over telephone channels. More recently, investiga-
tors have employed other corpora for training phone
recognizers, including Switchboard (English) [41.21]
(e.g., [41.22, 23]), CallHome (Arabic, Japanese, Man-
darin, and Spanish) [41.21] (e.g., [41.22, 23]), and
SpeechDat-East (Czech, Hungarian, Polish, Russian,
and Slovak)d [41.24] (e.g., [41.8]).

41.3.2 Classifiers

Using the sequence of phone tokens, a number of dif-
ferent classification techniques can be applied to make
a language recognition decision. Two popular tech-
niques are described here in detail: PRLM, a generative
model of phonetic n-gram sequences, and PR-SVM-
LATT (phone recognition followed by lattice-based
support vector machines), a discriminative approach to
language recognition. Both approaches assume that lan-
guages differ in their phonotactic characteristics and
that these differences will cause a phonetic recogni-
tion system to produce different distributions of token
sequences.
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PRLM
The basic PRLM decision rule is described by

L∗ = argmax
L

PL (W |X) , (41.19)

where X are the acoustic observations, W is the hypoth-
esized token sequence W = w1, . . . , wN , and L∗ is the
optimal language decision. The term PL (W |X) can be
decomposed using Bayes’ rule:

PL (W |X) =
same ∀L︷ ︸︸ ︷
p(X|W) ·PL (W)

p(X)︸︷︷︸
same ∀L

. (41.20)

For a given tokenizer, the terms p(X|W) and p(X)
are the same across language models, since X is known
and W is determined from the phone recognition de-
coding process described above. As such, the following
simplified PRLM decision rule can be applied:

L∗ = argmax
L

PL (W) . (41.21)

As (41.21) suggests, only language model scores are
used to make a language recognition decision. Phone
recognition acts solely to discretize the input speech
signal.

In real implementations PL (W) is approximated by
an n-gram language model of fixed order,

PL (W) ≈
N∏

i=1

language model︷ ︸︸ ︷
PL (wi |wi−1 . . . wi−(n−1)) . (41.22)

Here, the probability PL (wi |wi−1 . . . wi−(n−1)) =
PL (ŵi ), is a look up of the frequency of occurrence
of n-gram ŵi = wi−n+1wi−n+2 · · ·wi in language L’s
training data. n-grams are a simple yet effective way
of capturing the context preceding a token. For the lan-
guage recognition problem, n-grams of order two and
three (i. e., bigrams and trigrams) are commonly em-
ployed. Increasing the n-gram order should theoretically
increase the ability of language recognition modeling
techniques to incorporate longer term dependencies, but
in practice these models are difficult to estimate given
the paucity of training data. As the order n increases, the
number of possible unique n-grams increases exponen-
tially as |W |n , where |W | is the size of the tokenizer’s
phone inventory. Standard smoothing techniques have
been shown to help mitigate the n-gram estimation
problem for language recognition tasks [41.25]. Other
language modeling techniques, such as binary decision
trees, have also been used successfully to model n-gram
sequences with n > 3 [41.26].

Lattice-Based PRLM. As stated above, the standard 1-
best PRLM model relies solely on the probability of
the phone token sequence in its decision rule. This acts
as an approximation of the acoustic hypothesis space
generated by the underlying HMM phonetic models for
a given input.

In [41.22], a better approximation using an exten-
sion of the 1-best PRLM model is proposed in which
posterior probabilities of phone tokens are incorporated
into the estimation of the language models and the obser-
vation likelihoods. In this model, estimates of expected
counts derived from phone lattices are used in place of
1-best counts during LM training and scoring.

To derive this extension, the standard 1-best lan-
guage modeling equation can be reformulated in log
form as

log PL (W)

=
∑
∀ŵ

C(ŵ) log PL (wi |wi−1, . . . , wi−n+1) , (41.23)

where

ŵ = wiwi−1 . . . wi−n+1 (41.24)

and C(ŵ) is the count of the n-gram ŵ in the sequence W .
In (41.23), the sum is performed over the unique n-grams
ŵ in W .

In the lattice formulation, n-gram counts from the
1-best hypothesis are replaced with expected counts
from a phone lattice generated by the decoding of an
input message:

EL[ log PL (W)] =∑
∀ŵ

EL
[
C(ŵ)

]
log PL (wi |wi−1 . . . , wi−n+1) .

Like the 1-best hypothesis, the phone lattice is only
an approximation of the acoustic hypothesis space
for a given speech utterance. There is evidence that
both the quality of the phonetic models and the
phone lattices used for language recognition are im-
portant [41.19,27]. Many methods of generating lattices
have been proposed in the automatic speech recognition
(ASR) literature [41.28–30]. The Viterbi n-best tech-
nique with a fixed number of trace-backs per state is
often used [41.31].

Parallel PRLM (PPRLM)
An important aspect of the PRLM method, implied
by (41.21), is that the operations of tokenization (by the
phone recognizer) and language modeling are decou-
pled. As a consequence, it is not necessary for the phone
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Fig. 41.8 PPRLM: parallel phone recognition followed by language
modeling

recognizer to be trained in any of the target languages as
long as the tokenization of the target languages is suffi-
ciently distinct. In a natural extension of this observation,
Zissman [41.15] proposed running phone recognizers
for multiple languages in parallel in order to provide
more-diversified coverage of the phones encountered
in target languages. The resulting system configuration,
commonly known as parallel PRLM (PPRLM), employs
a bank of phone recognizers, each of which is followed
by a set of language models trained from the correspond-
ing token sequences that it generates. As with PRLM,
the multiple phone recognizers are trained using phonet-
ically or orthographically labeled speech, but need not
be of any of the target languages. An example is shown
in Fig. 41.8 where parallel Japanese and Mandarin phone
recognizers are used to tokenize speech in a German ver-
sus Spanish language recognition task. The next section
will describe methods by which the individual outputs
are fused to produce a final score.

Language recognition systems based on PPRLM
were found to outperform their competitors [41.5] and
dominated the field of language recognition for a number
of years. More recently, employing banks of lattice-
based phone recognizers has led to further language
recognition performance improvement [41.22]. Efforts

have also been made to reduce the computation load of
a PPRLM system by employing a single multilingual
phone recognizer but to date these approaches have not
proved to be more effective than PPRLM [41.32].

PPR-SVM-LATT
The PPR-SVM-LATT approach is an application of
SVM classification for token streams [41.33]. For the
PPR-SVM-LATT classifier, the phone token sequence
for each utterance X in a language corpus is used to
compute a vector of n-gram probabilities,

b =

⎛
⎜⎜⎜⎜⎝

c1 p(ŵ1|X)

c2 p(ŵ2|X)
...

cN p(ŵN |X)

⎞
⎟⎟⎟⎟⎠

. (41.25)

The probability p(ŵi |X) represents the frequency of oc-
currence of n-gram ŵi in the utterance X, and N = |W |
is the number of possible n-grams. The n-gram probabil-
ities can be computed from counts from the 1-best phone
sequence or from expected counts from phone lattices.
Experiments have determined that expected counts from
lattices produce better performance.

The values ci in (41.25) are weights that normal-
ize the components of the vector to a common scale.
Typically, a weighting such as the term-frequency log
likelihood ratio (TFLLR) [41.33] can be applied. For
TFLLR,

ci = 1√
p(ŵi |{X j})

, (41.26)

the probability p(ŵi |{X j}) is calculated across all utter-
ances of all languages in the training corpus.

After converting utterances to vectors, a simple lin-
ear kernel, K (b1, b2) = bT

1 b2, is used, where the bi are
the expansion of two utterances as in (41.25). Train-
ing and scoring are done in a manner analogous to the
cepstral SVM.

41.4 System Fusion

The previous sections of this chapter described a vari-
ety of methods available for implementing a language
recognition system. In practice, additional performance
improvements can be obtained by running multiple sys-
tems in parallel and fusing the individual scores using
a back-end. If the recognizers do not behave uniformly

(i. e., their errors are not completely correlated) then
combining the scores may make it possible to exploit
complementary information that exists in the scores.
Score fusion was first adopted as a means of combining
the scores produced by a PPRLM language recognizer
and has since been applied to fusing scores of differ-
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Automatic Language Recognition Via Spectral and Token Based Approaches 41.4 System Fusion 819

ent types of recognizers, such as those described in
Sects. 41.2 and 41.3.

41.4.1 Methods

For purpose of this discussion it is convenient to divide
approaches to fusion into two types, rule based and clas-
sifier based. Rule-based fusion applies a fixed formula
to the scores, such as a weighted-sum rule or product
rule, where weights are either uniform or are chosen
empirically using a set of development data. One ex-
ample of a rule-based method for combining the scores
in a PPRLM system will be discussed below. The sec-
ond approach to fusion utilizes a development data set to
train a classifier from a feature vector constructed from
the individual system scores. In theory, the joint statistics
among the scores (elements of the feature vector) can
be exploited by the classifier to produce overall perfor-
mance that is superior to that achieved with a rule-based
back.end.

Product-Rule Fusion
A method for fusing the scores of a PPRLM language
recognition system using the product rule was pro-
posed by Zissman [41.5]. Assume a PPRLM language
recognizer that uses K phone recognizers to detect L lan-
guages. For each test input, a set of KL (linear) scores
is generated, with each phone recognizer producing L
scores. For an input utterance X, single per-language
scores y(X|l) are computed by first normalizing the like-
lihoods sk,l produced by phone recognizer k and then
multiplying the normalized per-language values across
all phone recognizers:

y(X|l) =
K∏
k

sk,l∑L
l sk,l

. (41.27)

The normalization step puts scores across phone rec-
ognizers into a common range, and the multiplication
step creates a final score. Probabilistically, the first step
turns the raw phone recognizer scores into posteriors
(with an assumption of equal priors) and the second
step computes a joint probability of the observed data
under the assumption that the information sources (in-
dividual PRLM systems) are independent. A potential
drawback of product-rule fusion is that a single score
close to zero may have an undesirably large impact
on the final result. Despite the apparent inaccuracy of
the independence assumption, the product-rule method
proved to be an effective way of combining PPRLM
scores [41.5].

Classifier Fusion
Classifier-based fusion for PPRLM language recog-
nition systems was originally proposed by Yan and
Bernard [41.34] using neural networks and by Ziss-
man [41.35] using Gaussian classifiers, and these authors
reported that performance was superior to that obtained
with the product-rule approach. A block diagram of
a Gaussian-based fusion approach for language recog-
nition is shown in Fig. 41.9. The method consists of
linear discriminant analysis (LDA) normalization fol-
lowed by Gaussian classification. Although there can be
no guarantee that this particular classifier-based fusion
architecture produces optimum results in all language
recognition applications, extensive development testing
has shown that the technique produces reliably superior
performance. Other investigators have reported results
using neural network-based back-end fusion [41.22].

The generic block diagram in Fig. 41.9 shows a set
of core language recognizers (e.g., GMM, SVM, PRLM,
PPRLM), each of which produces a score or score vector
for each language hypothesis given an input utterance.
These scores are used to form the elements of a fea-
ture vector that is transformed via linear discriminant
analysis, a method by which the feature vector is pro-
jected into a reduced dimensional space in such a way
as to maximize interclass separability and minimize in-
traclass variability. In the figure, the transformed space
is of dimension L −1, where L is the number of classes
(languages) represented in the back-end training data.
The transformed vector also has the desirable prop-
erty that its features are decorrelated. It is important
to recognize that the individual recognizers may pro-
duce different sized score vectors and that the scores
may represent likelihoods of any languages, not just the
target languages.
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Fig. 41.9 Gaussian-based fusion for language recognition
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820 Part G Language Recognition

The transformed feature vectors are then processed
by a parallel bank of Gaussian classifiers. Each Gaussian
has input dimension L −1, a diagonal grand covariance
(i. e., pooled across all the back-end training data), and
produces an output y(X|l).

41.4.2 Output Scores

The form of the final system scores depends on the
nature of the language recognition application. For
closed-set identification, the index of the maximum
score, maxl y(X|l), produced using either the rule- or
classifier-based method is sufficient to identify the win-
ning language hypothesis. For a detection task, where
decisions are made using a fixed threshold, the output
score must be formed in such a way as to be consis-
tently meaningful across utterances. Typically, this is
accomplished by interpreting the (linear) scores y(X|l)
as likelihoods and forming an estimated likelihood ratio
r(X|l) between the target language score and the sum
(or average) of the others:

r(X|l) = y(X|l)
1

L−1

∑L
j �=l y(X| j)

. (41.28)

The estimated likelihood ratio can then be used to set
a threshold to achieve a specific application dependent
operating point.

Language recognition applications often require that
scores be reported as posterior probabilities rather than
as likelihoods or likelihood ratios. This may be the
case when the downstream consumer (human or ma-
chine) requires confidence scores or scores that have
been mapped from unconstrained likelihoods or likeli-
hood ratios to a normalized range (0–1 or 0–100). In
principle, the scores y(X|l) produced by the back-end
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Fig. 41.10 Posterior probability estimation

fusion for input utterance X can be used directly to gen-
erate posterior probabilities P(l) for each target language
l via Bayes’ rule:

P(l|X) = y(X|l)Pl∑L
l y(X|l)Pl

, (41.29)

where Pl represents the prior probability of target lan-
guage l. In practice, posteriors estimated this way may
be unreliable due to the inaccurate assumptions made in
constructing the overall system. Rather than treating the
scores as true likelihoods, it is preferable to view them
as raw scores and to estimate posteriors using another
classifier.

A block diagram of a method that has been found
useful for posterior probability estimation is shown
in Fig. 41.10. The fusion back-end log-likelihood ratio
estimates log r(X|l) are treated as raw inputs to a bank
of language-dependent single-input logistic regression
classifiers (implemented using LNKnet [41.36] as mul-
tilayer perceptrons) that produce estimates P̂(l|X) of
the posterior probabilities. These estimates can then
be interpreted by humans as meaningful measures of
confidence.

41.5 Performance Assessment

The language recognition approaches described in this
chapter have been subject to extensive development, and
this section describes their evaluation under conditions
that follow protocols established by the US National
Institute of Standards and Technology (NIST). Since
1996, NIST has coordinated several evaluations with
the goal of assessing the existing state-of-the-art in
language recognition technology. The most recent lan-
guage recognition evaluation (LRE 2005) protocol will
form the basis of the performance results presented in

this section. A description of the 2005 NIST language
recognition evaluation plan can be found in [41.37].

41.5.1 Task and Corpus

The task for LRE 2005 was the detection of the pres-
ence of one of seven target languages (English, Hindi,
Japanese, Korean, Mandarin, Spanish, Tamil) in tele-
phone speech utterances with nominal durations of
30, 10, and 3 seconds selected from unspecified lan-

Part
G

4
1
.5



Automatic Language Recognition Via Spectral and Token Based Approaches 41.5 Performance Assessment 821

guages and sources. The evaluation material contained
3,662 segments for each nominal duration. Although
NIST evaluated and reported performance results un-
der several conditions, its primary evaluation condition
consisted of trials for which the segments had 30 second
durations, were from one of the seven target languages,
and were from material collected by the Oregon Health
Sciences University (OHSU). Unless otherwise stated,
the results presented here will be for the NIST pri-
mary evaluation condition. For a complete description
of LRE 2005, see [41.38].

Training data for the systems described below was
drawn from four telephone speech corpora: CallFriend,
CallHome, Mixer, and Fisher, and cover 13 languages
(for more information on these corpora, see [41.21]).
CallFriend and CallHome contain conversations be-
tween acquaintances, while Mixer and Fisher contain
conversations between strangers. For a detailed descrip-
tion of the use of this material for training the recognizers
and the fusion back-end, see [41.23].

41.5.2 Systems

The fully fused system contained five core language
recognizer components. For each recognizer, nonspeech
frames were removed from the train and test utterances
using a GMM-based speech activity detector.

GMM
The Gaussian mixture model (GMM)-based language
recognizer used 2048 mixture components, shifted delta
cepstral (SDC) coefficients, feature normalization across
utterances to zero mean and unit variance on a per-
feature basis, and feature mapping [41.3]. The SDC
parameters N-d-P-k were set to 7-1-3-7 (Sect. 41.2.1),
resulting in a 49-dimension feature vector computed
over a 21-frame (210 ms) time span. In addition, gender-
dependent language models were trained for each of
the 13 languages in the training material. A back-
ground model was trained by pooling all the training
material, and gender-dependent target language models
were trained by adapting from the background model.
This method of training permits fast scoring during
recognition and was proposed by [41.39] for language
recognition. The GMM system produced a total of 26
scores per test utterance.

SVM
The support vector machine (SVM)-based language
recognizer used a generalized linear discriminant se-
quence (GLDS) kernel, expansion into feature space

using monomials up to degree three, and SDC coeffi-
cients derived as for the GMM recognizer. The features
were normalized across utterances to zero mean and unit
variance on a per-feature basis. Thirteen language mod-
els were constructed from the training material and 13
scores were produced per test utterance.

PPRLM
The PPRLM-based language recognizer used six OGI-
trained phone recognizers, a 39-dimensional MFCC
feature vector containing cepstra, delta, and double
delta coefficients, and trigram language modeling. Each
phone recognizer’s token sequences were used to train
13 language models, resulting in an output feature vector
of dimension 78. The phone recognizers and language
models were trained using Cambridge University en-
gineering department’s hidden Markov model toolkit
(HTK) [41.40].

PPRLM-LATT
A PPRLM based language recognizer using lattices to
generate probabilistic counts of phone frequencies for
bigram and trigram language modeling. Phone recogniz-
ers were trained using material from CallHome (Arabic,
Japanese, Mandarin) and Switchboard English (landline
and cellular). A total of seven phone recognizers were
trained, resulting in 91 (7 × 13) scores per input utter-
ance. The tokenizers were selected based on results of
development testing conducted in conjunction with LRE
2005 ( [41.41]).

PPR-SVM-LATT
The PPR-SVM-LATT-based language recognizer used
lattices to generate probabilistic counts of phone fre-
quencies that are then classified with support vector
machines. Probability vectors were constructed from un-
igrams and bigrams, and a linear kernel with TFLLR
weighting was applied. Lattices of phones were pro-
duced using HMM models trained on six OGI languages,
as in PPRLM. A total of 78 (6×13) scores were produced
per input utterance.

The scores of the core language recognizers were
stacked into a 286-dimension feature vector and fed
to the fusion back-end for dimension reduction (lin-
ear discriminant analysis) and classification (seven
Gaussians with pooled diagonal covariances). The out-
puts of the back-end were treated as estimated target
language likelihoods and log likelihood ratios were
formed by taking the log of the quantity in (41.28).
These scores were treated as the final outputs of the
system.
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Fig. 41.11 Performance (percentage EER) of spectral, to-
ken, and fused language recognition systems on the 2005
NIST LRE primary condition test

41.5.3 Results

NIST language recognition evaluations require partic-
ipants to provide two outputs for each test utterance,
a hard decision and an arbitrarily scaled likelihood
score. The hard decisions are used by NIST to evalu-
ate a cost function while the scores are used to sweep
out a detection error trade-off (DET) curve [41.42],
a variant of the familiar receiver operating character-
istic (ROC) curve. To compare detection performance
across competing systems, it is convenient to use a sum-
mary statistic such as the equal error rate (EER), and
this statistic has been adopted for comparison of the
language recognition systems described in this sec-
tion. Results for the NIST primary condition described
above, given in percentage EER, are shown in Fig. 41.11.
The recognizers have been categorized according to
whether they are spectral (GMM or SVM) or token based
(PPRLM, PPRLM-LATT, PPR-SVM-LATT). Individu-
ally, the best performing recognizer is PPRLM-LATT,
while the SVM system produces the most errors. The
remaining systems (GMM, PPRLM, and PPR-SVM-
LATT) perform comparably. It is worth noting that
fusing the scores of the spectral systems (SVM and
GMM) results in a large performance gain [41.23]. Fus-
ing the scores of all five recognizers produces the best
overall result.

Figure 41.12 shows the DET plots for five-
recognizer-system fusion for the LRE 2005 OHSU
target language test segments with durations 30, 10,
and 3 seconds. Table Table 41.1 gives the corresponding
EERs for these DET curves. It is apparent that lan-
guage recognition performance becomes increasingly
challenging as the test segment duration decreases, al-
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Fig. 41.12 Performance of five-system fusion on the
LRE 2005 OHSU target language test segments for du-
rations 30 s (solid line), 10 s (dashed line), and 3 s (dotted
line). Filled circles indicate equal error points

though recent work has demonstrated that performance
at shorter durations can be substantially improved [41.8].

41.5.4 Computational Considerations

Although the focus of the discussion of language recog-
nition systems has been performance, any practical
implementation of such a system needs to account for
computational complexity. A comparison of process-

Table 41.1 Performance, measured as percentage equal er-
ror rate (EER) of full-fusion system for 30 s, 10 s, and 3 s
test utterances

Duration EER(%)

30 4.3

10 10.3

3 21.2

Table 41.2 Processing speed of selected language recog-
nizers as measured with a 3 GHz Xeon processor with
2 GB RAM running Linux. The recognition task involved
12 target languages and five minute audio file. The PPRLM
system contained six OGI-trained phone recognizers (no
lattices). All factors refer to speeds faster than real time (RT)

Reognizer Speed

GMM 17 RT

SVM 52 RT

PPRLM 2 RT
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Automatic Language Recognition Via Spectral and Token Based Approaches References 823

ing speed for three types of recognizers is shown in
Table 41.2. Note that all factors indicate the degree
to which the algorithms are faster than real time. All
measurements were made using 12 language models
and a single 5 minute audio file. The platform was

a 3 GHz Xeon processor with 2 GB RAM and Linux
OS. The GMM, SVM, and PPRLM systems were de-
scribed in previous sections of this chapter. The PPRLM
language recognizer used six OGI tokenizers and no
lattices.

41.6 Summary

This chapter has presented a variety of methods for
implementing automatic language recognition systems.
Two fundamental approaches, based on either the spec-
tral or phonotactic properties of speech signals, were
successfully exploited for the language recognition task.
For the spectral systems, these included GMM and SVM
modeling using frame-based shifted delta cepstral coeffi-
cients. For phonotactic systems, variations of the classic
parallel phone recognition followed by language model-
ing were described. Performance gains can be achieved
by fusing the scores of multiple systems operating simul-

taneously, and a framework for implementing classifier
based fusion was described. Finally, performance re-
sults were presented for the spectral, token, and fused
systems using the standardized protocols developed by
NIST. For the latest advances in the field of automatic
language recognition, the reader is referred to the most
recent proceedings of the International Conference on
Acoustics, Speech, and Signal Processing (ICASSP), the
Odyssey Speaker and Language Recognition Workshop,
and the International Conference on Spoken Language
Processing (Interspeech – ICSLP).
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